The Similarity Problem for 3×3 Integer Matrices

Harry Appelgate and Hironori Onishi
Department of Mathematics
City College of New York
138th Street and Convent Avenue
New York, New York 10031

Submitted by Richard A. Brualdi

Abstract

Using results from the similarity problem of 2×2 integer matrices, we derive an algorithm for the solution of the similarity problem for 3×3 integer matrices.

1.

The conjugacy problem in $\operatorname{SL}(n, Z)$ and related arithmetic groups was solved recently by Grunewald [5]. Grunewald and Segal [6] solved the conjugacy problem for a wider class of groups. Their method is powerful, but complicated mathematically and computationally. In our previous paper [1], we presented a very straightforward and efficient algorithm for the conjugacy problem in $\operatorname{SL}(2, Z)$ by means of the simple continued fraction algorithm. In this paper we describe a simple algorithm which solves the conjugacy problem in $\operatorname{SL}(3, \mathrm{Z})$. Our method is restricted to 3×3 matrices but is quite simple and is not obtained by specializing Grunewald's algorithm to the case $n=3$.
2.

Actually what we solve is the similarity problem for 3×3 integer matrices: given two 3×3 integer matrices A and B, decide if $A \sim B$ or not, i.e. if there exists $R \in G L(3, Z)$ such that $R A R^{-1}=B$. Since $\operatorname{det}(-I)=-1$, we can always make sure that $R \in \operatorname{SL}(3, Z)$. Thus the conjugacy problem in $\operatorname{SL}(3, Z)$ is a special case of the similarity problem.
3.

Let A and B be 3×3 integer matrices. If the characteristic polynomials of A and B are different, then $A \nsim B$. Given a monic polynomial $f(t) \in Z[t]$ of degree 3 , let $S(f)$ denote the set of all 3×3 integer matrices having $f(t)$ as characteristic polynomial. We assume, then, that A and B are in $S(f)$ for some $f(t)$.

4.

First suppose that $f(t)$ is irreducible (over Q). Take a zero λ of $f(t)$ and put $K=Q(\lambda)$. Let X be an eigenvector of A belonging to λ with components in K. The components of X are linearly independent over Q. Let U be the Z-module in K generated by the components of X. Let V be the Z-module obtained from B in a similar way. The Lattimer-MacDuffee theorem [7, p. 53] says that $A \sim B$ iff $U \sim V$, i.e. iff there is $\gamma \in K^{X}$ such that $\gamma U=V$. Now, as remarked in [4, p. 128], there is a decision procedure for the similarity problem of full modules in an algebraic number field. This solves the similarity problem in $S(f)$ in case $f(t)$ is irreducible.

5.

The decision procedure for the similarity of modules is not restricted to the case $n=3$; it works for any n. However, it is very tedious and involves much unnecessary computation. For $n=2$, much computation can be avoided by the use of continued fractions. In a separate paper [2], we describe a procedure which generalizes Berwick's method [3]. This procedure resembles the continued fraction algorithm in the sense that it generates a "graphically" periodic expansion of a module. In [2] we shall give examples as applied to the similarity problem of matrices. In any case, the existence of a decision procedure in case $f(t)$ is irreducible is established.
6.

We now consider the case when $f(t)$ is reducible, $n=3$. Take $e \in Z$ such that $f(e)=0$. Given $A \in S(f)$, by Theorem III. 12 of [7], one can effectively
find $R \in G L(3, Z)$ such that

$$
R A R^{-1}=\left(\begin{array}{cc}
e & a \\
0 & A_{2}
\end{array}\right)
$$

where A_{2} is 2×2 and $a=\left(a_{1}, a_{2}\right)$. Briefly, this may be done as follows. Find a 3×1 integer vector X such that $A X=e X$. We may assume X is primitive, i.e. that the ged of its components is 1 . Then find $R \in G L(3, Z)$ such that $R X=(1,0,0)^{T} . R A R^{-1}$ will have the desired form.
7.

If $f(t)=\left(t-e_{1}\right)\left(t-e_{2}\right)\left(t-e_{3}\right), e_{i} \in Z$, then we can effectively find $R \in$ GL(3, Z) such that

$$
R A R^{-1}=\left(\begin{array}{ccc}
e_{1} & a_{1} & a_{2} \\
0 & e_{2} & a_{3} \\
0 & 0 & e_{3}
\end{array}\right)
$$

Again, this is a special case of Theorem IIL. 12 of [7]. Briefly, with A_{2} as in Section 6, find $R_{2} \in G L(2, Z)$ such that

$$
R_{2} A_{2} R_{2}^{-1}=\left(\begin{array}{cc}
e_{2} & a_{3} \\
0 & e_{3}
\end{array}\right)
$$

Then

$$
R=\left(\begin{array}{cc}
1 & 0 \\
0 & R_{2}
\end{array}\right)
$$

8.

We now take care of the special case $f(t)=(t-e)^{3}$. We may assume that $A \neq e I$. By Section 7 we may assume that

$$
A=\left(\begin{array}{ccc}
e & a_{1} & a_{2} \\
0 & e & a_{3} \\
0 & 0 & e
\end{array}\right)
$$

9.

Lemma. If $a_{1} a_{3}=0$ in the matrix A of Section 8, i.e. if A el has rank 1 , then we can effectively find $R \in G L(3, Z)$ such that

$$
R A R^{-1}=\left(\begin{array}{ccc}
e & 0 & d \\
0 & e & 0 \\
0 & 0 & e
\end{array}\right), \quad d>0
$$

Proof. If $a_{1}=0$, then let $d=\operatorname{gcd}\left(a_{2}, a_{3}\right)$ and find $R_{2} \in \mathrm{GL}(2, \mathrm{Z})$ such that

$$
R_{2}\left(a_{2}, a_{3}\right)^{T}=(d, 0)^{T}
$$

Then with $a^{\prime}=\left(a_{2}, a_{3}\right)^{T}$,

$$
\left(\begin{array}{cc}
R_{2} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e I_{2} & a^{\prime} \\
0 & e
\end{array}\right)\left(\begin{array}{cc}
R_{2} & 0 \\
0 & 1
\end{array}\right)^{-1}
$$

has the desired form. If $a_{3}=0$, then let $d=\operatorname{gcd}\left(a_{1}, a_{2}\right)$ and find $R_{2} \in \mathrm{GL}(2, Z)$ such that

$$
\left(a_{1}, a_{2}\right) R_{2}^{-1}=(0, d)
$$

Then with $a=\left(a_{1}, a_{2}\right)$,

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & R_{2}
\end{array}\right)\left(\begin{array}{cc}
e & a \\
0 & e I_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & R_{2}
\end{array}\right)^{-1}
$$

has the desired form.
10.

It is clear that two matrices of the form in Section 9 are similar over Z iff they are identical.
11.

Lemma. In the matrix A of Section 8, if $a_{1} a_{3} \neq 0$, i.e. A - eI has rank 2, then we can effectively find $R \in G L(3, Z)$ such that $R A R^{-1}$ has the same form but satisfies the extra conditions that

$$
a_{1}>0, \quad a_{3}>0, \quad \text { and } \quad 0 \leqslant a_{2}<\operatorname{gcd}\left(a_{1}, a_{3}\right)
$$

Proof. Choosing a suitable diagonal matrix $R=\operatorname{diag}(\pm 1,1, \pm 1)$, we can make a_{1} and a_{3} positive. Let $d=\operatorname{gcd}\left(a_{1}, a_{3}\right)$, put $a_{2}=q d+r, 0 \leqslant r<d$, and find x and $y \in Z$ such that $a_{1} x-a_{3} y=q d$. Then with

$$
R=\left(\begin{array}{lll}
1 & y & 0 \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)
$$

we have

$$
R A R^{-1}=\left(\begin{array}{ccc}
e & a_{1} & r \\
0 & e & a_{3} \\
0 & 0 & e
\end{array}\right)
$$

12.

Lemma. Two matrices of the form in Section 8 satisfying the extra conditions in Section 11 are similar over Z iff they are identical.

Proof. Let A and B be such matrices, and suppose $R A=B R$ for some $R \in \mathrm{GL}(3, Z)$. Then with $E_{1}=(1,0,0)^{T}, B R E_{1}=R A E_{1}=e R E_{1}$. Since $B-e I$ has rank $2, R E_{1}=u_{1} E_{1}$ for some $u_{1} \in Z$. Thus the first column of R is $\left(u_{1}, 0,0\right)^{T}$ and $u_{1}= \pm 1$. Next, considering the left eigenvector $(0,0,1)$ of B belonging to e, we get that the last row of R is $\left(0,0, u_{3}\right)$ with $u_{3}= \pm 1$. Thus R is upper triangular and the diagonal entries u_{1}, u_{2}, u_{3} are ± 1. Put

$$
R=\left(\begin{array}{ccc}
u_{1} & x_{1} & x_{2} \\
0 & u_{2} & \boldsymbol{x}_{3} \\
0 & 0 & \boldsymbol{u}_{3}
\end{array}\right)
$$

Then the equality $R A=B R$ is equivalent to the equalities

$$
\begin{gathered}
u_{1} a_{1}=u_{2} b_{1}, \quad u_{2} a_{3}=u_{3} b_{3} \\
u_{1} a_{2}+a_{3} x_{1}=b_{1} x_{3}+u_{3} b_{2}
\end{gathered}
$$

Since $a_{1}, b_{1}, a_{3}, b_{3}$ are positive, $u_{1}=u_{2}=u_{3}=u$. Thus $a_{1}=b_{1}$ and $a_{3}=b_{3}$, and also $u\left(a_{2}-b_{2}\right)=a_{1} x_{3}-a_{3} x_{1}$. Since $u= \pm 1, d=\operatorname{gcd}\left(a_{1}, a_{3}\right)$ divides $a_{2}-$ b_{2} and hence $a_{2}=b_{2}$.
13.

In the rest we assume that $f(t)=(t-e) g(t)$ and $g(e) \neq 0$. [If $g(e)=0$ but $f(t) \neq(t-e)^{3}$, then use the other zero of $g(t)$ for e.] $g(t)$ may or may not be reducible. We can deal with both cases simultaneously. However, we need some results from the case $n=2$. They are:
(i) Given 2×2 matrices A and B over Z, we can effectively decide if $A \sim B$.
(ii) In case $A \sim B$, we can effectively find $R \in G L(2, Z)$ such that $R A R^{-1}$ $=B$.
(iii) Given a 2×2 matrix A over Z other than a scalar matrix, we can effectively find $A_{1} \in \mathrm{GL}(2, Z)$ such that A_{1} and $-I$ generate the centralizer

$$
Z(A)=\{R \in \mathrm{GL}(2, Z) \mid R A=A R\} .
$$

14.

These results for $n=2$ are worked out in [1]. However, some remarks are in order, especially about (iii), and also because in that paper the given matrix A is in $\operatorname{SL}(2, Z)$, while now A is an arbitrary 2×2 integer matrix. Let $g(t)=t^{2}-\tau t+\delta$, where τ and δ are in Z. Let $A \in S(g)$, but A not a scalar matrix.
15.

If $g(t)=(t-e)^{2}, e \in Z$, then we can effectively find $R \in G L(2, Z)$ such that

$$
R A R^{-1}=\left(\begin{array}{ll}
e & a \\
0 & e
\end{array}\right), \quad a>0
$$

Two matrices of the form on the right above are similar iff they are identical. The centralizer of such a matrix is generated by $-I$ and $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
16.

If $g(t)=\left(t-e_{1}\right)\left(t-e_{2}\right), e_{1} \neq e_{2}$ integers, then we can effectively find $R \in \mathrm{GL}(2, Z)$ such that

$$
R A R^{-1}=\left(\begin{array}{cc}
e_{1} & a \\
0 & e_{2}
\end{array}\right), \quad 0 \leqslant a \leqslant \frac{\left|e_{1}-e_{2}\right|}{2}
$$

Two matrices of the form on the right are similar over 7 . iff they are identical. The centralizer of such a matrix is generated by
(a) $-I$ if $0 \leqslant 2 a<\left|e_{1}-e_{2}\right|$;
(b) $-I$ and $\left(\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right)$ if $2 a=e_{1}-e_{2}>0$;
(c) $-I$ and $\left(\begin{array}{rr}-1 & 1 \\ 0 & 1\end{array}\right)$ if $2 a=e_{2}-e_{1}>0$.

17.

Assume $g(t)$ is irreducible. Let $\lambda=(\tau+\sqrt{\Delta}) / 2, \Delta=\tau^{2}-4 \delta$. Given

$$
A=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \in S(\mathrm{~g})
$$

let $\varphi(A)=(\lambda-d) / b ;(\varphi(A), 1)^{T}$ is an eigenvector of A belonging to λ. Then the map φ is one-to-one on $S(g)$ and $\varphi\left(R A R^{-1}\right)=R \cdot \varphi(A)$ for any $R \in$ $\mathrm{GL}(2, \mathrm{Z})$ (cf. (1), (2), (3) of [1]). Let $\alpha=\varphi(A) \in Q(\lambda)$, and consider the
module $U=\langle\alpha, 1\rangle$ and its coefficient ring O_{U}. We have the isomorphism between $Z(A)$ and O_{U}^{X} determined by

$$
B(\alpha, 1)^{T}=\varepsilon(\alpha, 1)^{T}, \quad B \in Z(A), \quad \varepsilon \in O_{U}^{X}
$$

18.

Suppose $\Delta<0$ in Section 17. Then $\alpha=\varphi(A)$ is a complex number, and we know (i) and (ii) of Section 13 as explained in (4) of [1]. As for (iii), O_{U}^{X} is a finite cyclic group. Pick a generator of O_{U}^{X}, and pick a corresponding $A_{1} \in Z(A)$.
19.

Suppose $\Delta>0$ in Section 17. Then we know (i) and (ii), as explained in (5) and (8) of [1]. (iii) is implicit in (12) of [1]. Let $\alpha=\varphi(A)$, and

$$
\alpha=\left[q_{1}, \ldots, q_{k}, \overline{q_{k+1}, \ldots, q_{m}}\right]
$$

be the continued fraction of α. For $n>0$ let

$$
A_{n}=\left(\begin{array}{cc}
q_{1} & 1 \\
1 & 0
\end{array}\right) \ldots\left(\begin{array}{cc}
q_{n} & 1 \\
1 & 0
\end{array}\right)
$$

Then $Z(A)$ is generated by $-I$ and $A_{m} A_{k}^{-1}$.
20.

Now that the results (i), (ii), and (iii) of Section 13 have been clarified, we can continue with the discussion started there. Let A and B be in $S(f)$. We may assume that

$$
A=\left(\begin{array}{cc}
e & a \\
0 & A_{2}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
e & b \\
0 & B_{2}
\end{array}\right) .
$$

Decide if $A_{2} \sim B_{2}$ over Z. If $A_{2} \sim B_{2}$ then $A \sim B$. In fact, if $R A=B R$ for some
$R \in \mathrm{GL}(3, Z)$, then R is of the form

$$
\left(\begin{array}{cc}
u & r \\
0 & R_{2}
\end{array}\right)
$$

and $R_{2} A_{2}=B_{2} R_{2}$. In the rest we assume that $A_{2} \sim B_{2}$. Find $R_{2} \in \operatorname{GL}(2, Z)$ such that $R_{2} A_{2} R_{2}^{-1}=B_{2}$. Then

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & R_{2}
\end{array}\right)^{-1}\left(\begin{array}{cc}
e & b \\
0 & B_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & R_{2}
\end{array}\right)=\left(\begin{array}{cc}
e & b R_{2} \\
0 & A_{2}
\end{array}\right)
$$

Thus we may assume that $A_{2}=B_{2}$. Let $g(t)=t^{2}-\tau t+\delta$, which is the characteristic polynomial of \boldsymbol{A}_{2}.
21.

Suppose that $A_{2}=c I$. Considering $A-c I$, we may assume that $A_{2}=0$.
Lemma. If

$$
A=\left(\begin{array}{ll}
e & a \\
0 & 0
\end{array}\right)
$$

we can effectively find $R \in G L(3, Z)$ such that

$$
R A R^{-1}=\left(\begin{array}{lll}
e & 0 & d \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where d is a (positive) divisor of e. Two matrices of this form are similar iff they are identical.

Proof. If $a=0$, then

$$
R=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { gives }\left(\begin{array}{ccc}
e & 0 & e \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Suppose $a=\left(a_{1}, a_{2}\right) \neq 0$. Let $c=\operatorname{gcd}\left(a_{1}, a_{2}\right)$, and find $R_{2} \in \mathrm{GL}(2, Z)$ such
that

$$
\left(a_{1}, a_{2}\right) R_{2}^{-1}=(0, c)
$$

Then

$$
R=\left(\begin{array}{cc}
1 & 0 \\
0 & R_{2}
\end{array}\right) \quad \text { gives } \quad\left(\begin{array}{ccc}
e & 0 & c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Now let $d=\operatorname{gcd}(e, c)$, and put $e=e_{1} d, c=c_{1} d$. Find x, y in 7. such that $e_{1} x+c_{1} y=1$. Then find u, v in Z such that $u y-v e_{1}=1$. Then we check that

$$
\left(\begin{array}{lll}
e & 0 & c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & -c_{1} & x \\
0 & u & v \\
0 & e_{1} & y
\end{array}\right)=\left(\begin{array}{ccc}
1 & -c_{1} & x \\
0 & u & v \\
0 & e_{1} & y
\end{array}\right)\left(\begin{array}{lll}
e & 0 & d \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

22.

Now assume that A_{2} is not a scalar matrix. Let

$$
m=e \tau-e^{2}-\delta \quad \text { and } \quad A_{0}=A_{2}-(\tau-e) I_{2}
$$

Since $g(e) \neq 0$, we get that $m \neq 0$ and A_{0} is nonsingular. Let

$$
A=\left(\begin{array}{cc}
e & a \\
0 & A_{2}
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
e & b \\
0 & A_{2}
\end{array}\right) .
$$

Lemma. A~B iff there is $R_{2} \in Z\left(A_{2}\right)$ and $u= \pm 1$ such that

$$
\begin{equation*}
b A_{0} R_{2} \equiv u a A_{0}(\bmod m) \tag{1}
\end{equation*}
$$

Remark. Since $Z\left(A_{2}\right)$ is generated by A_{1} modulo $\pm I$, and we can effectively find A_{1}, and A_{1} has finite multiplicative order $\bmod m$, the congruence (1) can be checked in a finite number of steps.

Proof of lemma. Suppose $R A=B R$ for some $R \in G L(3, Z)$. Then R is of the form

$$
R=\left(\begin{array}{cc}
u & r \\
0 & R_{2}
\end{array}\right)
$$

and the equality $R A=B R$ says that $R_{2} \in Z\left(A_{2}\right)$ and

$$
\begin{equation*}
u a+r A_{2}=e r+b R_{2} \tag{2}
\end{equation*}
$$

Write (2) as $b R_{2}-u a=r\left(A_{2}-e I_{2}\right)$. Since A_{0} is nonsingular, this is equivalent to

$$
b R_{2} A_{0}-u a A_{0}=r\left(A_{2}-e I_{2}\right) A_{0}
$$

Since $R_{2} A_{2}=A_{2} R_{2}$ and $\left(A_{2}-e I_{2}\right) A_{0}=m I_{2}$, this is equivalent to

$$
\begin{equation*}
b A_{0} R_{2}-u a A_{0}=m r \tag{3}
\end{equation*}
$$

which implies the congruence (1). Conversely, suppose that the congruence (1) holds for some $R_{2} \in Z\left(A_{2}\right)$ and $u= \pm 1$. Then define a vector r by (3). This gives the desired R.
23.

Example.

$$
A=\left(\begin{array}{rrr}
-15 & -3 & 7 \\
38 & 8 & -16 \\
-17 & -3 & 10
\end{array}\right), \quad B=\left(\begin{array}{rrr}
9 & 9 & 7 \\
-3 & -10 & -3 \\
2 & 30 & 4
\end{array}\right)
$$

A and B have the same characteristic polynomial

$$
f(t)=(t-2)\left(t^{2}-t+7\right)
$$

Using the eigenvalue 2, we get the first reduction

$$
\begin{array}{ll}
R_{1} A R_{1}^{-1}=\left(\begin{array}{rrr}
2 & -3 & 7 \\
0 & 5 & -9 \\
0 & 3 & -4
\end{array}\right) \quad \text { with } \quad R_{1}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right), \\
R_{2} B R_{2}^{-1}=\left(\begin{array}{rrr}
2 & 9 & 7 \\
0 & -10 & -3 \\
0 & 39 & 11
\end{array}\right) \quad \text { with } \quad R_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) .
\end{array}
$$

$g(t)=t^{2}-t+7$ is the characteristic polynomial of

$$
A_{2}=\left(\begin{array}{ll}
5 & -9 \\
3 & -4
\end{array}\right) \quad \text { and } \quad B_{2}=\left(\begin{array}{rr}
-10 & -3 \\
39 & 11
\end{array}\right)
$$

$\lambda=(1+i 3 \sqrt{3}) / 2$ is a zero of $g(t)$. In terms of $\rho=(1+i \sqrt{3}) / 2$, a primitive 6 th root of unity, we have $\lambda-3 \rho-1$. Then

$$
\begin{aligned}
& \alpha=\varphi\left(A_{2}\right)=\frac{\lambda+4}{3}=\rho+1 \\
& \beta=\varphi\left(B_{2}\right)=\frac{\lambda-11}{39}=\frac{\rho-4}{13} .
\end{aligned}
$$

Since $-1 / \beta=-13 /(\rho-4)=\rho+3-\alpha+2$,

$$
\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 2
\end{array}\right)
$$

sends α to β. Thus $A_{2} \sim B_{2}$ and

$$
\left(\begin{array}{rr}
0 & -1 \\
1 & 2
\end{array}\right) A_{2}\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right)=B_{2} .
$$

Hence

$$
R_{3}^{-1}\left(R_{2} B R_{2}^{-1}\right) R_{3}=\left(\begin{array}{rrr}
2 & 7 & 5 \\
0 & 5 & -9 \\
0 & 3 & -4
\end{array}\right), \quad R_{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 2
\end{array}\right) .
$$

Since $U=\langle\alpha, 1\rangle=\langle\rho, 1\rangle=O_{K}$, then $K=Q(\lambda)=Q(\rho), O_{U}^{X}=\langle\rho\rangle$. We have

$$
A_{1}(\alpha, 1)^{T}=\rho(\alpha, 1)^{T}, \quad A_{1}=\left(\begin{array}{ll}
2 & -3 \\
1 & -1
\end{array}\right)
$$

Thus A_{1} generates $Z\left(A_{2}\right)$ and

$$
\Lambda_{1}^{2}=\left(\begin{array}{ll}
1 & -3 \\
1 & -2
\end{array}\right), \quad A_{1}^{3}--I
$$

We now check the congruence (1). First note that

$$
m=-9 \quad \text { and } \quad A_{0}=A_{2}+I_{2}=\left(\begin{array}{ll}
6 & -9 \\
3 & -3
\end{array}\right)=3 A_{1}
$$

So the congruence (1) is

$$
(7,5) 3 A_{1} A_{1}^{n} \equiv \pm(-3,7) 3 A_{1}(\bmod 9)
$$

which is equivalent to

$$
(1,-1) A_{1}^{n} \equiv(0, \pm 1)(\bmod 3)
$$

$n=2$ is a solution. Thus $A \sim B$. To find

$$
R_{4}=\left(\begin{array}{cc}
u & r \\
0 & A_{1}^{2}
\end{array}\right)
$$

in GL(3, 7.) such that

$$
R_{4}\left(\begin{array}{rrr}
2 & -3 & 7 \\
0 & 5 & -9 \\
0 & 3 & -4
\end{array}\right) R_{4}^{-1}=\left(\begin{array}{rrr}
2 & 7 & 5 \\
0 & 5 & -9 \\
0 & 3 & -4
\end{array}\right)
$$

we have to find $u= \pm 1$ and r such that

$$
(7,5) 3 A_{1} \Lambda_{1}^{2}-u(-3,7) 3 A_{1}=-9 r
$$

$u=-1$ and $r=(2,1)$ is a solution. Thus

$$
R_{4}=\left(\begin{array}{rrr}
-1 & 2 & 1 \\
0 & 1 & -3 \\
0 & 1 & -2
\end{array}\right) .
$$

Altogether we have

$$
R_{4} R_{1} A R_{1}^{-1} R_{4}^{-1}=R_{3}^{-1} R_{2} B R_{2}^{-1} R_{3}
$$

Thus $R A R^{-1}=B$ with

$$
R=\left(\begin{array}{rrr}
-1 & 2 & 1 \\
-5 & -1 & 2 \\
18 & 1 & -8
\end{array}\right)
$$

24.

Example.

$$
A=\left(\begin{array}{rrr}
12 & 7 & 8 \\
107 & -8 & 29 \\
73 & -50 & -7
\end{array}\right), \quad B=\left(\begin{array}{rrr}
64 & 140 & 23 \\
-19 & -59 & 2 \\
-41 & -103 & -8
\end{array}\right) .
$$

A and B have the same characteristic polynomial

$$
f(t)=(t-2)\left(t^{2}+5 t+3\right)
$$

Using the eigenvalue 2 , we get the first reduction

$$
\begin{aligned}
R_{1} A R_{1}^{-1} & =\left(\begin{array}{rrr}
2 & 7 & 8 \\
0 & -22 & 13 \\
0 & -29 & 17
\end{array}\right), & R_{1}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
3 & 0 & 1
\end{array}\right), \\
R_{2} B R_{2}^{-1} & =\left(\begin{array}{rrr}
2 & 19 & -2 \\
0 & 7 & 29 \\
0 & -3 & -12
\end{array}\right), & R_{2}-\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 3 & 0 \\
0 & -2 & 1
\end{array}\right), \\
A_{2} & =\left(\begin{array}{ll}
-22 & 13 \\
-29 & 17
\end{array}\right), & B_{2}=\left(\begin{array}{rr}
7 & 29 \\
-3 & -12
\end{array}\right),
\end{aligned}
$$

$g(t)=t^{2}+5 t+3$ is the characteristic polynomial of A_{2} and B_{2}, and

$$
\begin{aligned}
& \lambda=\frac{-5+\sqrt{13}}{2}, \\
& \alpha=\varphi\left(A_{2}\right)=\frac{39-\sqrt{13}}{58}, \\
& \beta=\varphi\left(B_{2}\right)=-\frac{19+\sqrt{13}}{6} .
\end{aligned}
$$

Computing the continued fractions for α and $\gamma=-\beta$, we get that $\alpha \sim \beta$ and hence $A_{2} \sim B_{2}$. In fact $\left(\begin{array}{rr}-3 & 1 \\ 2 & -1\end{array}\right)$ maps α to β, and hence

$$
\left(\begin{array}{rr}
-3 & 1 \\
2 & -1
\end{array}\right) A_{2}\left(\begin{array}{rr}
-3 & 1 \\
2 & -1
\end{array}\right)^{-1}=B_{2} .
$$

This gives

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & -1 \\
0 & -2 & -3
\end{array}\right)\left(\begin{array}{rrr}
2 & 19 & -2 \\
0 & 7 & 29 \\
0 & -3 & -12
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -3 & 1 \\
0 & 2 & -1
\end{array}\right)=\left(\begin{array}{rrr}
2 & -61 & 21 \\
0 & -22 & 13 \\
0 & -29 & 17
\end{array}\right) .
$$

With $a=(7,8)$ and $b=(-61,21)$ we have to check the congruence (1). $m=-17$ and

$$
A_{0}=A_{2}+7 I_{2} \equiv\left(\begin{array}{rr}
2 & -4 \\
5 & 7
\end{array}\right)(\bmod 17)
$$

The centralizer $Z\left(A_{2}\right)$ is generated by $\pm I$ and

$$
C=\left(\begin{array}{ll}
-18 & 13 \\
-29 & 21
\end{array}\right)
$$

which corresponds to $(3+\sqrt{13}) / 2$. Computing $C^{n} \bmod 17$, wc get $C^{8} \equiv-I_{2}$ $(\bmod 17)$ and $a A_{0} \equiv(3,-6)(\bmod 17)$. Next compute $b A_{0} C^{n} \bmod 17$ for $n=0,1, \ldots, 7$. We get $(7,0),(-7,6),(3,1),(2,-8),(-8,-6),(-5,8),(-6,1)$, $(-6,-6)$. Since none of these is congruent to $\pm(3,-6)(\bmod 17)$, we conclude that $A \nsim B$.

REFERENCES

1 H. Appelgate and H. Onishi, Continued fractions and the conjugacy problem in SL(2, Z), Comm. Algebra 9(11):1121-1130 (1981).
2 H . Appelgate and H. Onishi, Periodic expansion of module and its relation to units, J. Number Theory, to appear.

3 W. E. H. Berwick, The classification of ideal numbers that depend on a cubic irrationality, Proc. London Math. Soc. 12:343-429 (1913).
4 Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic, New York, 1966.
5 F. Grunewald, Solution of the conjugacy problem in certain arithmetic groups, in Word Problems II (S. I. Adian, W. W. Boone, and G. Higman, Eds.), North-Holland, 1979.
6 F. Grunewald and D. Segal, The solubility of certain decision problems in arithmetic and algebra, Bull. Amer. Math. Soc. 1:915-918 (1979).
7 M. Newman, Integral Matrices, Academic, New York, 1972.

