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ABSTRACT 

Using results from the similarity problem of 2 X 2 integer matrices, we derive an 
algorithm for the solution of the similarity problem for 3X3 integer matrices. 

1. 

The conjugacy problem in SL(n, 2) and related arithmetic groups was 
solved recently by Grunewald [5]. G runewald and Segal [6] solved the 
conjugacy problem for a wider class of groups. Their method is powerful, but 
complicated mathematically and computationally. In our previous paper [l], 
we presented a very straightforward and efficient algorithm for the conjugacy 
problem in SL(2,Z) by means of the simple continued fraction algorithm. In 
this paper we describe a simple algorithm which solves the conjugacy 
problem in SL(3, Z). Our method is restricted to 3 X 3 matrices but is quite 
simple and is not obtained by specializing Grunewald’s algorithm to the case 
n=3. 

2. 

Actually what we solve is the similarity problem for 3 X 3 integer matrices: 
given two 3 X 3 integer matrices A and B, decide if A-B or not, i.e. if there 
exists REGL(3, Z) such that RAR-’ =B. Since det(-I)= - 1, we can 
always make sure that R E SL(3, Z). Thus the conjugacy problem in SL(3, Z) 
is a special case of the similarity problem. 
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3. 

Let A and B be 3 X 3 integer matrices. If the characteristic polynomials of 
A and B are different, then Ar B. Given a manic polynomial f(t) E 2 [t] of 
degree 3, let S(f) denote the set of all 3 X3 integer matrices having f(t) as 
characteristic polynomial. We assume, then, that A and B are in S(f) for 
some f( t ). 

4. 

First suppose that f(t) is irreducible (over Q). Take a zero h of f(t) and 
put K = Q(X). Let X be an eigenvector of A belonging to A with components 
in K. The components of X are linearly independent over Q. Let U be the 
Z-module in K generated by the components of X. Let V be the Zmodule 
obtained from B in a similar way. The I&timer-MacDuffee theorem [7, p. 
531 says that A - B iff U-V, i.e. iff there is ye KX such that yU= V. Now, as 
remarked in [4, p. 1281, there is a decision procedure for the similarity 
problem of full modules in an algebraic number field. This solves the 
similarity problem in S(f) in case f( t ) is irreducible. 

5. 

The decision procedure for the similarity of modules is not restricted to 
the case n =3; it works for any n. However, it is very tedious and involves 
much unnecessary computation. For n = 2, much computation can be avoided 
by the use of continued fractions. In a separate paper [2], we describe a 
procedure which generalizes Berwick’s method [3]. This procedure resembles 
the continued fraction algorithm in the sense that it generates a “graphically” 
periodic expansion of a module. In [2] we shall give examples as applied to 
the similarity problem of matrices. In any case, the existence of a decision 
procedure in case f(t) is irreducible is established. 

6. 

We now consider the case when f( t ) is reducible, n = 3. Take e E Z such 
that f(e) = 0. Given A E S( f ), by Theorem III. 12 of [7], one can effectively 
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find R EGL(~, Z) such that 

RAzr’= ; i2 , ( 1 
where A, is 2X2 and a=(a,, az). Briefly, this may be done as follows. Find a 
3 X 1 integer vector X such that AX=eX. We may assume X is primitive, i.e. 
that the gcd of its components is 1. Then find R EGL(~, Z) such that 
RX=(l,O,O)r. BAR-’ will have the desired form. 

7. 

If f(t)=(t-ei)(t-e,)(t-es), e,EZ, then we can effectively find RE 
GL(3, Z) such that 

el aI a2 

m~--l= 0 e2 a3 . 

i 1 0 0 e3 

Again, this is a special case of Theorem III.12 of [7]. Briefly, with A, as in 
Section 6, find R, EGL(Z, Z) such that 

Then 

8. 

We now take care of the special case f( t ) = ( t - e)3. We may assume that 
A fez. By Section 7 we may assume that 
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9. 
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LEMMA. lf ala3 =O in the matrix A of Section 8, i.e. if A- eZ has rank 

1, then we can effectively find R E GL(3,Z) such that 

d>O. 

Proof. If a, =O, then let d=gcd(a,, as) and find R, EGL(~, 2) such 

that 

Then with a’=(a,, aJ, 

has the desired form. If a3 =O, then let d=gcd(a,, az) and find R, eGL(2,Z) 

such that 

(a,,a,)Ri’=(O,d). 

Then with a=(al, a,), 

has the desired form. 

10. 

n 

It is clear that two matrices of the form in Section 9 are similar over Z iff 

they are identical. 
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11. 

LEMMA. In the matrix A of Section 8, if ala3 #O, i.e. A -eI has rank 2, 
then we can effectively find R EGL(~, Z) such that RAR-’ has the same 
fm but satisfies the extra conditions that 

a,>% a,>O, and OGa, cgcd(a,, a3). 

Proof. Choosing a suitable diagonal matrix R =diag( * 1, 1, & l), we can 

make a, and a3 positive. Let d=gcd(ar, a,), put a2 =qd+r, O<r<d, and 
find x and yEZ such that a,x-a,y=qd. Then with 

we have 

12. 

LEMMA. Two matrices of the fm in Section 8 satisfying the extra 
conditions in Section 11 are similar over Z iff they are identical. 

Proof. Let A and B be such matrices, and suppose RA = BR for some 
REGL(~, Z). Then with E, =(l,O,O)r, BRE, =RAE, =eRE,. Since B-eZ 
has rank 2, RE, =ulE1 for some ur EZ. Thus the first column of R is 
(ur, 0,O)r and ur = -C 1. Next, considering the left eigenvector (O,O, 1) of B 
belonging to e, we get that the last row of R is (O,O, us) with us = 2 1. Thus 
R is upper triangular and the diagonal entries ur, us, us are 2 1. Put 
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Then the equality RA =BR is equivalent to the equalities 

ulu2 +a,~, =blx3 +u,b,. 

Since a,, b,, u3, b, are positive, ur =u2=u3=u. Thus ul=bl and u3=b3, 
and also u( a2 -b,)=a,x, -a3;r1. Sinceu=fl,d=gcd(a,,a,)dividesa,- 
b, and hence a2 = b,. n 

13. 

In the rest we assume thatf(t)=(t - e)g(t) and g(e)#O. [If g(e)=0 but 
f(t)#(t - e)3, then use the other zero of g(t) for e.] g(t) may or may not be 
reducible. We can deal with both cases simultaneously. However, we need 
some results from the case n ~2. They are: 

(i) Given 2 X2 matrices A and B over Z, we can effectively decide if 
A-B. 

=?I’ 
n case A-B, we can effectively find R EGL(2, Z) such that RAR-’ 

(iii) Given a 2 X2 matrix A over Z other than a scalar matrix, we can 
effectively find A, EGL(~, Z) such that A, and -Z generate the centralizer 

Z(A)={REGL(2,Z)jRA=AR}. 

14. 

These results for n =2 are worked out in [l]. However, some remarks are 
in order, especially about (iii), and also because in that paper the given matrix 
A is in SL(2, Z), while now A is an arbitrary 2X 2 integer matrix. Let 
g(t)= t2 - it + 6, where r and S are in Z. Let AE S(g), but A not a scalar 
matrix. 
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15. 

If g(t) =(t-e)‘, eE 2, then we can effectively find R EGL(~, 2) such 
that 

a>O. 

Two matrices of the form on the right above are similar iff they are identical. 

The centralizer of such a matrix is generated by -I and 

16. 

If g(t)=(t-er)(t-es), e, fe,. integers, then we can effectively find 
R EGL(~, Z) such that 

e1 a 
RAR-‘= o e2 , ( 1 o_.a( h-e21 

.--ii--’ 

Two matrices of the form on the right are similar over Z iff they are identical. 
The centralizer of such a matrix is generated by 

(a) -I if 0<2a<Je, -e,l; 

(b) -Zand (i _:) if2a=e,-e,>O; 

(c) -Z and ( -i k) if 2a=e2-el>O. 

17. 

Assume g(t) is irreducible. Let X=(r+fi)/2, A=? -48. Given 

A= ; ; ES(g), ( 1 
let cp(A)=(A-Q/b; (cp(A),l) r is an eigenvector of A belonging to X. Then 
the map cp is one-to-one on S(g) and q(RAR-‘)=R*cp(A) for any RE 
GL(2, Z) (cf. (l), (2), (3) of [l]). Let a=cp(A)~Q(h), and consider the 
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module U= (a, 1) and its coefficient ring 0,. We have the isomorphism 
between Z(A) and 0: determined by 

B(a, l)r=s(o, l)‘, BEZ(A), EEOC. 

18. 

Suppose A (0 in Section 17. Then (Y = (p( A) is a complex number, and we 
know (i) and (ii) of Section 13 as explained in (4) of [l]. As for (iii), 0: is a 
finite cyclic group. Pick a generator of Oc, and pick a corresponding 
A, EZ(A). 

19. 

Suppose A>0 in Section 17. Then we know (i) and (ii), as explained in (5) 
and (8) of [l]. (iii) is implicit in (12) of [l]. Let a=q(A), and 

ql,...~qk, qk+lr-**, %I 1 

be the continued fraction of (Y. For n>O let 

Then Z(A) is generated by - Z and A,,, Ai ‘. 

20. 

Now that the results (i), (ii), and (iii) of Section 13 have been clarified, we 
can continue with the discussion started there. Let A and B be in S(f). We 
may assume that 

Decide if A, -B, over Z. If A,r B, then A r B. In fact, if RA = BR for some 
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R E GL(3, Z), then R is of the form 

and R,A,=B,R,. In the rest we assume that A,-B,. Find R,EGL(~, Z) 
such that R,A,R,l=B,. Then 

Thus we may assume that A,=B,. Let g(t)=t’--7t+& which is the 
characteristic polynomial of A 2. 

21. 

Suppose that A,=cZ. Considering A - cZ, we may assume that A,=O. 

LEMMA. Zf 

we can effectively find R E GL(3, Z) such that 

where d is a (positive) divisor of e. Two matrices of this form are similar iff 
they are identical. 

Proof. If a =O, then 

Suppose a=(a,,a,)#O. Let c=gcd(a,,a,), and find R,EGL(~,Z) such 
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Then 

Now let d=gcd(e,c), and put e=e,d, c=cld. Find x,y in 2 such that 
elx+cly= 1. Then find U, u in Z such that Uy--el= 1. Then we check that 

22. 

Now assume that A, is not a scalar matrix. Let 

m=eT-e2-8 and A,=A,-(T-e)Z,. 

Since g(e)#O, we get that m#O and A, is nonsingular. Let 

LEMMA. A--B~ffthe~eisR,EZ(A~)andu=-tlsuch that 

bA,R2~uuA, (mod m). 

REMARK. Since Z(A,) is generated by A, moddo i-Z, 

effectively find A,, and A, has finite multiplicative order 
congruence (1) can be checked in a finite number of steps. 

(1) 

and we can 
mod m, the 
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Proof of lemma. Suppose RA=BR for some R EGL(3,Z). Then R is of 
the form 

and the equality RA = BR says that R, E Z( A,) and 

uu+rA,=er+bR,. (2) 

Write (2) as bR, - ua = T( A, - el,). Since A, is nonsingular, this is equivalent 
to 

bR2A,-uuA,=r(A,-eZ,)A,,. 

Since R,A,=A,R, and (A,-eZ,)A,=mZ,, this is equivalent to 

bAoRZ--uaAO=mr, (3) 

which implies the congruence (1). Conversely, suppose that the congruence 
(1) holds for some R, E Z( A,) and u= * 1. Then define a vector r by (3). 
This gives the desired R. w 

23. 

EXAMPLE. 

9 9 7 

A and B have the same characteristic polynomial 

f(t)=(t-2)(t2-t+7). 
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Using the eigenvalue 2, we get the first reduction 

g( t ) = t ’ - t + 7 is the characteristic polynomial of 

A=(l+i30)/2 1s a zero of g(t). In terms of p=(l+@)/2, a primitive 6th 
root of unity, we have X=3p- 1. Then 

h+4 
c~=cp(A,)=~ =p+l, 

h-11 p-4 
P=dB,)=y=~. 

Since -l/p= -13/(p-4)=p+3=cu+2, 

(: -xl f)=(f -3 
sends (Y to p. Thus A, - B2 and 

Hence 



SIMILARITY OF 3 X 3 INTEGER MATRICES 171 

Since U=(a,l)=(p,l)=Ok, then K=Q(h)=Q(p), OS=(p). We have 

Ar(~,l)r=~b,l)r, Al=(; 1;). 

Thus A, generates Z(A,) and 

A;=(; I;), A”1 = -I. 

We now check the congruence (1). First note that 

m=--9 and A,=A,+Zs=(; 4=3A1. 

So the congruence (1) is 

(7,5)3A,A’; =-t(-3,7)3A, (mod 9), 

which is equivalent to 

(1, -l)A;-(0, kl) (mod3). 

n = 2 is a solution. Thus A-B. To find 

in GL(3, Z) such that 

we have to find u = r+ 1 and T such that 

(7,5)3A,A2,--u(-3,7)3A,=-9r. 
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u = - 1 and T= (2,l) is a solution. Thus 

Altogether we have 

R,RIAR,‘R,’ =R,‘R,BR~‘R,. 

Thus RAR-’ =B with 

18 1 -8 

24. 

EXAMPLE. 

1: -8 7 2: -59 140 

73 -50 -7 - 103 

A and B have the same characteristic polynomial 

f(t)=(t-2)(tS+5t+3). 

Using the eigenvalue 2, we get the first reduction 

R,,R;‘=(; Ii ;], &=[-; ; 

0 
0 I 
1 ! 

A,= 
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g( t ) = t2 + 5 t + 3 is the characteristic polynomial of A, and Z?,, and 

a=v(A,)= 
39-m 

58 9 

p=(p(B,)= - 19+p , 

Computing the continued fractions for (Y and y= -/3, we get that a-P and 

hence A, --B,. In fact maps (Y to p, and hence 

-3 
-1 

2 
=B,. 

This gives 

2 19 -2 1 0 0 
0 7 29 0 -3 1 
0 -3 -12 ii 0 2 -1 

With a = (7,8) and b = (-61,21) we have to check the congruence (1). 
m=--17and 

A,=A,+71,=( t -$) (mod 17). 

The centralizer Z(A,) is generated by * Z and 

C= 
( 

-18 13 
I -29 21 ’ 

which corresponds to (3 + m)/2. Computing C” mod 17, we get C8 = - I, 
(mod 17) and aA, ~(3, -6) (mod 17). Next compute bA,C” mod 17 for 
n=O,l ,...,7.Weget(7,0),(-7,6),(3,1),(2,-8),(-8,-6),(-5,8),(-6,1), 
(-6, -6). Since none of these is congruent to *(3, -6) (mod 17), we 
conclude that A 7 B. 
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